COURS



#### Les solutions aqueuses

http://www.capneuronal.fr/

## Les compétences à acquérir...

- Solvant, soluté Concentration en masse, concentration maximale d'un soluté.
- Identifier le soluté et le solvant à partir de la composition ou du mode opératoire de préparation d'une solution.
- Distinguer la masse volumique d'un échantillon et la concentration en masse d'un soluté au sein d'une solution.
- Déterminer la valeur de la concentration en masse d'un soluté à partir du mode opératoire de préparation d'une solution par dissolution ou par dilution.
- Mesurer des masses pour étudier la variabilité du volume mesuré par une pièce de verrerie; choisir et utiliser la verrerie adaptée pour préparer une solution par dissolution ou par dilution.
- Déterminer la valeur d'une concentration en masse et d'une concentration maximale à partir de résultats expérimentaux.
- Dosage par étalonnage : Déterminer la valeur d'une concentration en masse à l'aide d'une gamme d'étalonnage (échelle de teinte ou mesure de masse volumique).

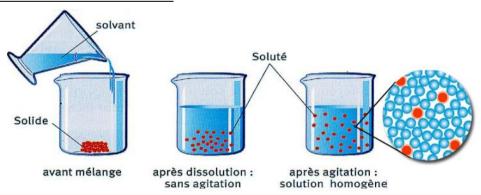


**QCM** et Vidéos

## I- Qu'est qu'une solution en chimie?

Pour comprendre le niveau de salinité de la Mer Morte, il faut remonter dans le temps. Il y a 4 milliards d'années, quand notre planète « venait » de se former, les volcans présents sur Terre étaient nombreux et très actifs. Pendant 100 millions d'années et jusqu'à ce que la Terre voit sa température baisser, les éruptions de ces volcans ont libéré de la vapeur d'eau et des gaz en grande quantité.

Puis quand la Terre s'est refroidie toute la vapeur d'eau s'est mise à retomber en pluie capturant au passage les gaz. Ces pluies acides entrèrent en contact avec les roches, lesquelles étaient riches en sels minéraux, notamment en sodium. L'eau a ruisselé et, avec




l'érosion, a provoqué par les pluies acides. De grandes quantités de sodium puis de chlorure de sodium (du sel) se sont donc retrouvées dissoutes dans les mers et océans.

Pour un océan la salinité, c'est-à-dire la concentration en masse de sel, est en moyenne de 35 grammes de chlorure de sodium pour 1 litre d'eau. Mais dans la Mer Morte c'est beaucoup plus : 300 grammes par litre d'eau.

L'eau de mer est une rest une recisément une récisément une recisément une

#### 1- Définition d'une solution en chimie :



Une solution est un me lance home aine obtenu par disolution.... 

- Le solvant est un liquide et c'est l'espèce chimique . Mayou loure.

Si le solvant est l'eau alors on parlera ... de solution aqueure
- Les solutés sont des espèces chimiques ... origines qui peuvent être, avant d'être dissoutes dans le solvant, à l'état . Auli de ... liqui de . ou ca jeune Ce sont des espèces ....min oribines .....dans la solution.

Remarque:

En cuisine, lorsque l'on dissout du sel dans de l'eau on parle d'eau. sa le e

En chimie, on parlera de solution aqueuse de chloruse de sodium (Na++Cl-)

## 2- Comment caractériser différentes solutions aqueuses dans lesquelles il y a le même soluté? La concentration en masse du soluté Cm

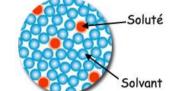
Ajouter plus de sucre dans le café ...





Le café sera plus ou moins sucré

Ajouter plus de sirop ...




Le sirop sera plus ou moins coloré

En chimie, les termes sucré et coloré seront remplacés par .com cem hali on

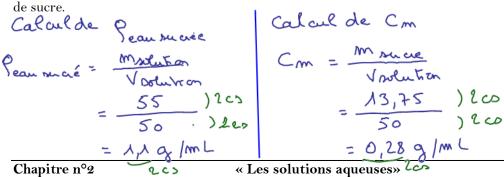
a- La concentration en masse de soluté Cm (soluté) est le rapport de la masse du soluté m(soluté) par le volume de la solution  $V_{\rm sol}$ 

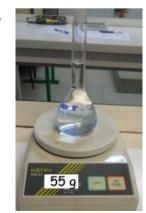
- m(soluté) exprimée en g ou kg
- Vsol exprimé en mL ou L
- Cm exprimée en g/L ou g/mL ou kg/L



Echelle microscopique

Attention, il ne faut pas confondre concentration en masse de soluté Cm(soluté) et la masse volumique d'une solution  $\rho_{sol}$ 


| Masse volumique d'une solution notée $ ho_{sol}$ (rho)                                                                                                                                                                                                 | Concentration massique d'un soluté dissous dans l'eau : |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| La masse volumique d'une solution $\rho_{sol}$ est le rapport de la masse de la solution $m_{solution}$ par le volume $V_{solution}$ : $\rho_{sol} = \frac{m_{solution}}{V_{solution}}$ La masse volumique d'un corps s'exprime donc en g/L ou en kg/L | $C_m = \frac{m}{V_{solution}}$                          |


Dans le cas, de la masse volumique  $ho_{sol}$  d'une solution, on utilise la Marce de la Molumon et dans le cas de la concentration en masse d'un soluté Cm, on utilise la .mane. du soluté.....

Exercice: Une masse de sucre m<sub>sucre</sub> = 13,75 g est dissoute dans une fiole jaugée de 50 mL.

Une fois la dissolution réalisée, la masse de la solution est pesée après avoir utilisé la touche « TARE » (Voir ci-contre)

Calculez la masse volumique de cette solution sucrée et la concentration en masse



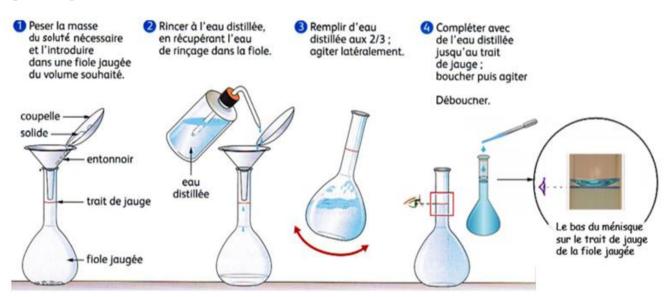


#### b- Qu'est qu'une solution saturée?

La **concentration en masse maximale** de chlorure de sodium (sel), appelée aussi **solubilité**, dans l'eau à 25°C est de Cm(sel)= 365 g/L.

Cela veut dire qu'une masse de 365 g de sel est la masse maximale que l'on peut dissoudre dans 1 litre d'eau (à 25°C). Au delà, la solution est dite saturée en sel , on ne peut plus dissoudre de sel celui-ci reste solide dans la solution.

On ne peut dissoudre qu'une masse limitée de soluté dans un volume de solvant. Lorsque l'on ne peut plus dissoudre de soluté alors la solution est dite saturée


On peut écrire

**Remarque :** La mer morte est proche de la saturation en sel ! Cm = 300 g/L

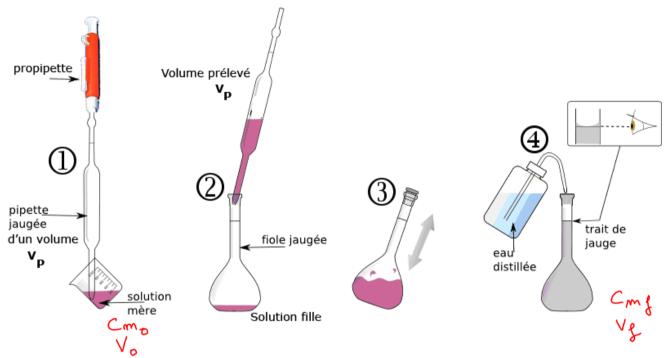
# II- Comment préparer une solution aqueuse?

#### a- Par dissolution :

Une solution peut être obtenue par dissolution, dans le solvant, d'un soluté initialement solide, liquide ou gazeux.



<u>Exercice</u>: Calculez la concentration en masse de saccharose sachant qu'une masse  $m_{sacc} = 35,5$  g a été dissoute dans une fiole de  $V_{sol} = 250$  mL


Calcul de la concentration de saccharose 
$$m_{sac}$$
  
 $C_m = \frac{m_{sac}}{V_{sol}} = \frac{35.5}{250.10^{-3}} = 140 g/L$ 

#### b- Par dilution:

Une solution  $S_{\rm fille}$ , appelée solution fille, peut être obtenue par dilution d'une solution plus concentrée, appelée solution mère  $S_{\rm mère}$ , en prélevant un certain volume  $V_{\rm p}$  de la solution mère et en l'introduisant dans une fiole jaugée de volume  $V_{\rm fille}$ .

La masse de soluté prélevée dans la solution mère reste inchangée dans la solution fille.

| Exprimez le volume | prélevé dans l | la solution | mère |
|--------------------|----------------|-------------|------|
|--------------------|----------------|-------------|------|



## Exercices

Calculez le volume prélevé Vp dans la solution mère de  $Cm_0$  = 12 g/L pour fabriquer une solution fille de concentration  $Cm_f$  = 4,0 g/L et de volume  $V_f$ =100

Calculez la concentration en masse de soluté C' $m_f$  d'une solution fille de volume  $V'_f$  = 200 mL si l'on prélève un volume  $V'_p$ =20,0 mL d'une solution mère de C' $m_0$  = 150 g/L

Réécrire tout le raisonnement en adaptant les formules aux notations de la question

dosd'une dilution il y a

conservation de la maroc

m pélevir = m inhoduite

So

Calcul de Vp

Cm 0 × Vp = Cm 4 × Vg

=> Vp = Cm 5 × V4

Cm 0

= 4,0 × 100

12

= 33 mL

does d'une dilution il y a

con recoation de la marac

m péleur = m mhoduite

So

Cal cul de C/mg

Cm o x V/p = C/mg x V/g

=) C/mg = \frac{Cm o x V/p}{V/f}

=\frac{150 \times 20,0}{200}

= 15,0 \times 1/L

## III- Comment déterminer la concentration Cm en masse de soluté d'une solution ?

## 1- A partir d'une échelle de teinte : (Cf activité 4 « Boisson énergisante »)

Si une espèce est colorée alors il est possible de fabriquer une gamme de solutions étalons dont on peut calculer leurs concentrations en masse  $Cm_i$ . Il suffit ensuite d'encadrer la solution de Cm (inconnue) en observant la coloration.

<u>Exemple</u>: Considérons\_une solution mère  $S_0$  de permanganate de potassium  $(K^+ + MnO_4^-)$ 

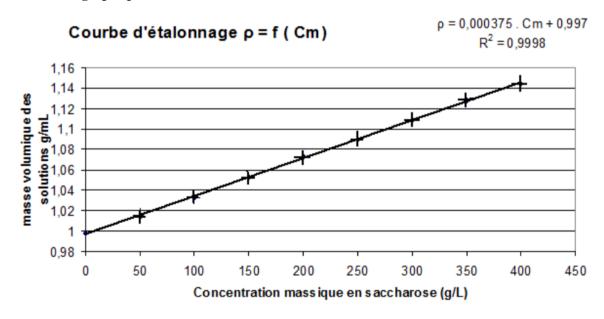
Fabriquons par dilution 5 solutions filles dont on peut calculer leurs concentrations en masse Cmi

| Solutions                           |     |     |     |     |     |
|-------------------------------------|-----|-----|-----|-----|-----|
| Concentration Cm <sub>i</sub> (g/L) | 5,0 | 4,0 | 3,0 | 2,0 | 1,0 |

La solution dont on cherche la concentration Cm(inconnue)



Conclusion:


## 2- A partir d'une courbe d'étalonnage :

Si la solution n'est pas colorée (et même si elle l'est) ou pour améliorer la précision on peut mesurer une grandeur physique (la masse volumique par exemple) qui dépend de la concentration en masse de soluté.

- a-Fabriquer une gamme de solutions étalons et mesurer la grandeur physique X
- b-Tracer la courbe d'étalonnage, c'est-à-dire la grandeur X en fonction de Cm des solutions étalons
- c- Déterminer graphiquement la concentration en masse des la solution inconnue

**Exemple :** On souhaite déterminer la concentration en masse de saccharose Cm(sacc\_inconnue). A partir d'une courbe d'étalonnage préalablement réalisée.

La solution de concentration en masse de saccharose inconnue à une masse volumique  $\rho_{sacc\_inc} = 1,06 \text{ g/mL}$ Déterminez graphiquement sa concentration en masse

